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Abstract—An analysis is performed to study the flow and heat transfer characteristics of laminar free
convection in boundary layer flows from horizontal, inclined, and vertical flat plates in which the wall
temperature T,(x) or the surface heat flux ¢,(x) varies as the power of the axial coordinate in the form
T(x) = T,+ax" or q, = bx™. The governing equations are first cast into a dimensionless form by a
nonsimilar transformation and the resulting equations are then solved by a finite-difference scheme.
Numerical results for fluids with Prandtl numbers of 0.7 and 7 are presented for three representative
exponent values under each of the nonuniform surface heating conditions. It has been found that both the
local wall shear stress and the local surface heat transfer rate increase as the angle of inclination from the
horizontal y increases or as the local Grashof number increases. An increase in the value of the exponent
n or m enhances the surface heat transfer rate, but it causes a decrease in the wall shear stress. Correlation
equations for the local and average Nusselt numbers are obtained for the special cases of uniform wall
temperature (UWT) and uniform surface heat flux (UHF). Comparisons are also made of the local Nusselt
numbers between the present results and available experimental data for the UHF case, and a good
agreement is found to exist between the two.
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INTRODUCTION

HEeaT TRANSFER by natural convection is frequently
encountered in our environment and in engineering
devices. Natural convection arises from the buoyancy
force induced by density differences in a fluid. Lami-
nar free convection along horizontal, inclined and
vertical plates with uniform surface temperature or
uniform surface heat flux has been extensively studied
analytically (see, e.g. Refs. [1-7]). There are also
experimental investigations on natural convection
from vertical, inclined, and horizontal surfaces, cover-
ing both laminar and turbulent regimes under either
a constant-wall-temperature or a constant-surface-
heat-flux condition, such as those studies cited in Refs.
[8-13]. However, these analytical and experimental
studies [1-13] were conducted under the situations of
uniform thermal boundary conditions.

In a large number of technical applications, the
surface heating conditions are nonuniform and the
induced buoyant flow is laminar. This accounts for
the fact that laminar free convection with nonuniform
surface heatings has also received considerable atten-
tion in the past. Sparrow [14] formulated the boun-
dary-layer problem for free convection along a non-
uniformly heated vertical flat plate by the Karman—
Pohlhausen method and obtained solutions by a series
expansion technique. Similarity solutions for free con-
vection on a nonisothermal vertical plate were provided
by Sparrow and Gregg [15]. Subsequently, Yang [16)
conducted a study of laminar free convection on non-
isothermal vertical plates and cylinders to establish

various conditions under which a similarity solution
exists. A Gortler-type series expansion has also been
tried by Kelleher and Yang [17]. Later, Kao et al.
[18] developed a technique for the solution of free
convection on a nonisothermal vertical flat plate by
employing local similarity as a first approximation
and universal functions for improvement. More
recently, Yang et al. [19] applied appropriate coor-
dinate transformations and the Merk-type series to
solve a similar type of free convection problems. The
problem of laminar free convection along a non-
isothermal vertical plate with blowing or suction was
studied by Huang and Chen [20]. The aforementioned
investigations involving nonuniform surface heatings
[14-20] are for flow along a vertical flat plate. The
problems of free convection on horizontal and
inclined flat plates with nonuniform thermal con-
ditions have not received attention. This has motiv-
ated the present study.

In the present paper, laminar free convection along
horizontal, inclined and vertical flat plates with
power-law variation of the wall temperature or with
power-law variation of the surface heat flux is
analyzed. The boundary layer equations pertinent
to this problem contain both effects of streamwise
buoyancy force component and buoyancy-induced
streamwise pressure gradient in the momentum
equations. The governing system of equations is first
transformed into a dimensionless form and the result-
ing equations are then solved by a finite-difference
method. Numerical solutions are obtained for fluids
having Prandt] numbers of 0.7 (such as air) and 7 (such
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NOMENCLATURE
a dimensional constant in the power-law x axial coordinate
variation of the wall temperature y normal coordinate
b dimensional constant in the power-law Y,Y, pseudo-similarity variables defined,
variation of the surface heat flux respectively, by equations (26) and
C angle dependent function in equation (35).
(67)
D angle dependent function in equation Greek symbols
(71) o thermal diffusivity
LA reduced stream functions defined, B volumetric coefficient of thermal
respectively, by equations (9) and (18) expansion
F,F, reduced stream functions defined, ¥ angle of inclination from the horizontal
respectively, by equations (27) and (36) {4 nonsimilar parameters defined,
g gravitational acceleration respectively, by equations (31) and
Gr,, Gr; Grashof numbers defined, respectively, (40)
as gPp[T(x)— T,]x*/v? and {.,{,, nonsimilar parameters defined,
gBIT (L) — T L3 v? respectively, as (Gr¥ cos y/6)"/° tan y
Gr* Gr*¥ modified Grashof numbers defined, and (Gr¥sin y/5)""?cot y
respectively, as gBq.(x)x*/kv?, and KR pseudo-similarity variables defined,
9Bq. (L)L [kv? respectively, by equations (8) and
h local heat transfer coefficient, a7n
Gu(NT (%) — Tl 6,6, dimensionless temperatures defined,
h average heat transfer coefficient defined respectively, by equations (9) and
by equation (44) (18)
k thermal conductivity 0,0, dimensionless temperatures defined,
K, K,K;,K, Prandtl number dependent respectively, by equations (27) and
coefficients defined, respectively, by (36)
equations (65), (67), (69) and (71) u dynamic viscosity
L length of plate in the flow direction v kinematic viscosity
m exponent in the power-law variation of E&, nonsimilar parameters defined,
the surface heat flux respectively, by equations (13) and
] exponent in the power-law variation of (22)
the wall temperature £.,¢,, nonsimilar parameters defined,
Nu, local Nusselt number, Ax/k respectively, as (Gr, cos y/5)"° tan y
Nu average Nusselt number, AL/k and (Gr sin y/4)~"*cot y
P static pressure difference P density of fluid
Pr Prandtl number, v/« Ty local wall shear stress, u(0u/0y), -
qw local surface heat transfer rate per unit v stream function.
area, —k(6T/0y),_o
T fluid temperature Subscripts
u axial velocity component w condition at the wall
v normal velocity component o] condition at the free stream.

as water) for three representative exponent values of
the power-law variation in either the wall temperature
or the surface heat flux. :

ANALYSIS

Consider a semi-infinite flat plate that is inclined
from the horizontal with an acute angle y and is situ-
ated in an otherwise quiescent ambient fluid at tem-
perature T,. The x coordinate is measured from the
leading edge of the plate and the y coordinate is meas-
ured normally from the plate to the fluid. Two surface
heating conditions will be considered in the analysis :

(1) a power-law variation of the wall temperature,
To(x)— T, = ax"and (2) a power-law variation of the
surface heat flux, ¢.(x) = bx™; where a and b are
dimensional constants and m and »n are exponents.
The gravitational acceleration g is acting downward.
For simplicity, the analysis will be presented for the
case of fluid above a hot flat surface. This analysis will
also be valid for the case of fluid below a cold flat
surface.

In the analysis to follow, the fluid properties are
assumed to be constant except for the density vari-
ation that induces the buoyancy force. With this
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assumption and the application of the Boussinesq
approximation, the governing conservation equations
for laminar boundary layer flows can be written as

ou v
5§+5;=0 1)
ou  Ou 1 op ; a_wzu
4 03y = o ax TSI T Tt @)
1 dp
0=———+gfcosy(T—-T, 3
5 5y FoBeosH( ) ®)
T T o'T
A @

ax T dy oy

where the conventional notations are defined in the
Nomenclature. It must be pointed out, however, that
pis the static pressure difference induced by the buoy-
ancy force (i.e. p = 0 outside the boundary layer). The
x-momentum and y-momentum equations, equations
(2) and (3), can be combined by finding the buoyancy-
induced streamwise pressure gradient from equation
3)as

1 dp 0%
—;a—yﬂcos)’a—xj; (T-T,)dy. (%)
This leads to
du Ou J (>
uo +05 = gﬂcosyaj; (r-T,)dy
. o0%u
+gBsiny(T— Tao)+v—a;§- (6)

The boundary conditions for the present problem are
u=v=0 T=T/x)=T,+ax"

or gfx)=bx" at y=0 (7)

u—-»0, T->T, as t— .

It is noted here that equation (6) reduces to that for
a vertical plate without the buoyancy-induced stream
pressure gradient term when y = 90° and to that for
a horizontal plate without the buoyancy force term
when y = 0°. The case of uniform wall temperature
(UWT) corresponds to n = 0, whereas that of uniform
surface heat flux (UHF) to m = 0.

Next, the system of equations (6), (4) and (7) will
be transformed into a dimensionless form, separately
for the cases of power-law wall temperature variation,

T (x)—T, = ax", and power-law surface heat flux

variation ¢,,(x) = bx™. Owing to the inclination of the
plate, the boundary layers are nonsimilar. This point
will become clear later.

Power-law variation of wall temperature, T,(x)—
T, = ax"

A. Horizontal-inclined plate orientation (0° <y <
90°). Equations (6), (4) and (7) can be-transformed
from the (x, y) coordinates to the dimensionless coor-
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dinates [£(x), n(x, y)] by introducing
¢ =E&(x), n=/x)Gr.cosy/5)"", ®)

where &, depending only on x, is the nonsimilar par-
ameter and # is a pseudo-similarity variable. For a
similar boundary layer, £ = 0 and # reduces to a true
similarity variable. One also introduces a reduced
stream function f(&, n) and a dimensionless tem-
perature 6(&, n) defined, respectively, by

_ y(x,y)
fEnm= 55(Gr.cos 157’
T-T ®
6(&,n) = T—(;)_:%"—’

in which Gr, is the local Grashof number and
the stream function ¥ (x, y) satisfies the continuity
equation (1) with ¥ = dy/dy and v = —dy/0x.

Substituting equations (8) and (9) into equations
(6), (4) and (7), one obtains the following system of
equations

SO+ mENS—Q@u+ 1) P10

@© @

+ %[(2—n)n9+(4n+2)f 6dr]+(n+3)ff g—gdn]

"

of’ a
=(n+3)¢(f’f —f”%) (10)

o¢
1 e 00 _of
50+ +3)18 —5nf0—(n+3)§( ° a_c)
)

with the boundary conditions
f(&,0) =f"(¢,0)=f"(¢,0) =0;
0,0 =1, 6(,00)=0. (12)

In the foregoing equations, the primes denote partial
differentiations with respect to n, Pr is the Prandtl
number, and ¢ is found to have the following
expression

& = (Gr.cosy/5)°tany. (13)

The physical quantities of interest include the local
Nusselt number Nu, = hx/k, the local wall shear stress
Tw = W(0u/0y), - o, the axial velocity distribution u, and
the temperature distribution 8(¢, #). The first three
can be expressed, respectively, by

Nu, = —#(&,0)(Gr,cos y/5)/* (14)
Ty = S(u/x?)(Gr.cosy/S)*3f"(£,0)  (15)
ux/v = 5(Gr,.cos y/5)*3f (&, n). (16)

1t is noted here that the case of uniform wall tem-
perature (UWT) corresponding to n =0 has been
treated in Ref. [7]. It is also noted here that the bound-
ary layers become similar and equations (10)~(12)
reduce to a system of ordinary differential equations
when £ = 0 (i.e. y = 0°, the horizontal plate) or when
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¢ is a constant, independent of x. The latter situation
arises for an inclined plate when n = —3.

B. Vertical-inclined plate orientation (0° < y < 90°).
Equations (10)(12) become invalid when y = 90° (i.e.
for a vertical plate) because for this case £ = oo. To
provide a system of equations that are valid for ver-
tical and inclined plates, with the angle of inclination
(n/2—y) from the vertical, a separate analysis needs
to be performed. To this end, one introduces

Ei=¢&(x), n = /x)NGrssiny/4)*  (17)
and
_ Y(x, )
Si€un) = W,
T-T (18)
0:(&my) = T‘Oc)hﬁ""

in which siny arises from cos (n/2—%). The trans-
formation of equations (6), (4) and (7) leads to

ST+ m+3) fi f1 =2+ 1)f"?

1 [£<]
+91+Zfll:(l_n)ﬂ101+(3"+1)J 8, dn,
m

* 00,
_("+3)£|£‘ a—adm}
_ Lo Lo
—(n+3)51< la—él_f]a_él> 19
1 U 14 ’
F; i+ (n+3) 110" —4nf0,
_ L Of , 00,
—(n+3)¢|+<9|a—él—f1£) (20)
F€1,0) = f1(£1,0) = (&), 0) = 0;
0,:(¢,0)=1, 0,(,0)=0, (21)

in which the primes now stand for partial derivatives
with respect to #,. The nonsimilar parameter ¢, now
has the expression

¢, = (Gr,siny/4)~"*coty. (22)

The expressions for the local Nusselt number Nu,,
the local wall shear stress t,, and the axial velocity
distribution can be found as

Nu, = —0(£,,0(Gr,siny/4)"'* 23)
T = 4uv/x?)(Gr,siny/4)f1(E,0)  (24)
ux/v = 4(Gr,siny/4)"*f(£,,0). 25)

It is noted here that the case of UWT with =0
has been given in Ref. [S]. In addition, for both an
inclined plate with £, = constant (i.e. n = —3) and a
vertical plate (y = 90°) with £, = 0, equations (19)~
(21) reduce to a system of ordinary differential equa-
tions. This gives rise to a similar boundary layer
problem for both cases.
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Finally, through a combination of the above two
treatments, free convection of inclined plates for the
case of power-law wall temperature variation can be
covered for all angles of inclination, 0° < y < 90°.

Power-law variation of surface heat flux, q,, = bx”
A. Horizontal-inclined plate orientation (0° <7y <
90°). For this case, let

{=1{(x), Y= (/x)(Gr¥cosy/6)"®  (26)
_ Y(x, )
KL Y) = W’ o
(T—T_ )Gr*cosy/6)"/¢
0¢Y) =
€0 4Tk
be, respectively, the dimensionless coordinates,

stream function and temperature, where Gr* is the
modified Grashof number. Substitution of equations
(26) and (27) into equations (6), (4) and (7) yields

1
F"+(m+4)FF"=2m+ )F?+{0+ ¢ [(2 -mY®

+4(m+l)ij)dY+(m+4)Cjw§dY]

JOF'  OF
=(m+4)C<F o F 55) @8)

% @'+ (m+4)FO’' —(5m+2)F'O

0® _oF
=(m+4)c<F e a‘c) (29)

F(C,0)=F/(C,0)=F/(C,(X)) =0;

@0 =—1, 6 0)=0 (30)

in which { can be found to have the expression

{ = (Gr*cosy/6)"“tany (31

and the primes denote partial derivatives with respect
to Y.

The local Nusselt number Nu,, the wall shear stress
7., and the axial velocity distribution » are now given
respectively by

Nu, = (Gr¥cos y/6)"°/0((,0) (32)
7., = 6(uv/x?)(Gr¥*cos y/6) ' F"((,0) (33)
ux/v = 6(Gr*cosy/6)'*F'({, Y). 34)

For both an inclined plate with { = constant (i.e.
m = —4) and a horizontal plate with { = 0 (i.e.y = 0°)
equations (28)—(30) become a system of ordinary
differential equations and the boundary layers are
thus similar. The case of uniform surface heat flux
corresponds to m = 0.

B. Vertical-inclined plate orientation (0° < y < 90°).
When y = 90° (i.e. for a vertical plate), the system of
equations (28)—(30) does not hold because { becomes
infinity. For this reason, a separate analysis is carried
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out to provide a system of transformed equations for
the vertical-inclined orientation.
By introducing for this case

Li=CUx), Y,=(y/x)Gr¥siny/5)"° (35)
Y(x,5)

Fi(£, Y) =W, )

0., Y)= (T—T,)(Grtsiny/5)"° (36)

g (x)x/k ’

a transformation of equations (6), (4) and (7) results
in

1
F'+(m+4F, Fi—(2m+3)F*+ 0, + EC‘

x[(l—m)Y1®|+(3m+2)Jw®,dY1—(m+4)Cl

00, _ ,OF _ OF,
XJ;. a—cldY,:l—(m+4)Cl<F‘a—cl —F1%> 37

1
Fr-(")'{+(m+4)Fl®’l—(4m+1)F’1®1
OF_
e
Fi({1,0) = F\({1,0) = Fi({1,0) = 0;
01(,0)=-1, 0,(,0)=0, (39)

in which the primes stand for partial differentiations
with respect to Y, and the nonsimilar parameter {,
has the expression

{, = (Gr¥siny/5)~ " coty.

00,
Fl?{;) (3%

=(m+4)C1<

(40)

The local Nusselt number, the local wall shear stress,
and the axial velocity distribution u are expressible as

Nu, = (Gr¥siny/5)"°/@,((,,0) 41
tw = S(uv/x*)Gr¥siny/5)°F({,,0)  (42)
uxfv = 5(Grsiny/S)*F ({1, Y1) (43)

For both a vertical plate (y = 90°) with {, = 0 and
an inclined plate with {, = constant (i.e. m = —4),
equations (37)-(39) reduce to a system of ordinary
differential equations and the boundary layers become
similar.

A combination of the above two treatments will
then cover the entire inclination angles, 0° < y < 90°,
for free convection on inclined plates under the power-
law variation of surface heat flux.

Average Nusselt numbers

It is of practical interest to determine the average
heat transfer coefficient 4 or the average Nusselt num-
ber Nu for heat transfer calculations. These two quan-
tities are defined, respectively, by

AL

1(* —
=zj; hdx, Nu=7€-, (44)

where L is the length of plate in the flow direction.

HMT 29:10-B
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The expressions for the average Nusselt numbers are
as follows:
A. For T (x)—T, = ax"

0° <y < 90°

193
Nu(Gr,cosy/5) " = nj_35['L [0, 0)]d¢

(45)
0<y<90°
Nu(Gry sin y/4)~"/*
4 2
== méuLwérz[—Gﬁ(én 0)1d¢,. (46)

In equations (45) and (46), Gr,, &,, and &, are,
respectively, Gr,, & and ¢, evaluated at x = L. For
y = 0° and y = 90°, the corresponding equations are

NuGr5) "= -0 0) @)
and

_ 4

NiGr) = -0 @®)

B. For q,,(x) = bx™

0°<y<90°
NiGrtos )" =~ 07" f “106, 01" &
49)
0<y<90°
Nu(Gresiny/5)~ '/
5 e
== m—HCnLLMCﬁ[@l(Cl, 0]~ 'dl,. (50)

The Gr¥, {,, and {,; in the above equations are,
respectively, Gr¥, {, and (, evaluated at x = L. For
y = 0° and y = 90°, the corresponding Nusselt num-
ber expressions are

— 6
Nu(Grz/6)~ " = miaeOn (1)

— 5
Nu(Gr¥/5)~ "5 = a1 L (52)

Comparison between UWT and UHF cases

The cases of power-law variation of the wall tem-
perature and the surface heat flux can be simplified to
the uniform wall temperature (UWT) case whenn = 0
[3, 5, 7] and to the uniform surface heat flux (UHF)
case when m = 0. It is of interest to compare the
results between UWT and UHF cases. This will be
done for the local Nusselt number later when the
numerical results are presented.

To facilitate the comparison, one needs to define an
equivalent Grashof number for the UHF case in terms



1470

of the local wall temperature T'(x) as
(Gr. = gBITW(x) = To Jx*/v?, (53)
where
T(x)— T, = (qux/k)(Gr¥cosy/6)~°@((,0) (54)

from equation (27). Substituting equation (54) into
equation (53), one obtains

(Gr,).cosy = 6"4(Gr¥*cos y)*°®({,0).  (55)

With the use of equations (14), (32) and (55), the
Nusselt number ratio between the two heating con-
ditions, UWT and UHF, assumes the form

(Nu)uur _ (5/6) 1

(Nuuwr  [—0( 0[O, 0)]6/5 '
Before the Nusselt number ratio can be determined,
the relationship between & and { needs to be estab-

lished. From the expressions for ¢ and {, equations
(13) and (31), it can be shown that

&= (6/5)"°(10(, 001"

under the condition Gr, = (Gr,),.

It is noted that equations (54)—(57) are valid for
any angle except y = 90° (i.e. a vertical plate). As for
vertical and inclined plates, the following equations
for comparisons between the UWT and UHF cases
can be obtained in a similar manner :

(Gr).siny = 5'°(Gr¥siny)*°0,((,,0)

(Nu,)yur _ (4/5)1/4
(Nu)ywr B [©.({,0)] 5/4[_0/1@“ 0)] ’

Here the relationship between &, and {, is given by

&1 =(4/5)"“0[0,(L,, 01 (60)

(56)

(57)

(58)

(59)

METHOD OF SOLUTION

The system of equations for the power-law vari-
ation of wall temperature, equations (10)~(12), and
the system of equations for the power-law variation
of surface heat flux, equations (28)—(30), both of
which are valid for 0° <y < 90°, were solved by a
finite-difference method modified from that described
in Ref. [21]. In this method, the partial differential
equations (10)—(12) or (28)-(30) are first reduced to a
system of first-order equations which are then ex-
pressed in finite-difference form and solved along with
their boundary conditions by an iterative scheme. The
solutions start with £ = 0 or { = 0, which are obtained
by a fourth-order Runge-Kutta integration method
with a proper step size An or AY. With the solutions
for £=0 or {=0 available for 0 <y <n, or
0<Y<Y,, where 5, and Y are the dimensionless
boundary layer thicknesses respectively for the cases
of power-law variation of wall temperature and
power-law variation of surface heat flux, one proceeds

T. S. CHEN et al.

to the first £ > 0 or { > 0 location with a proper step
size A or A{ and obtains a converged solution for
the interval 0 < n <y, 0or0 < Y < Y, at that £ or {
location by iterations, and so on, by marching in the
¢ or { direction. To conserve space, the details of the
numerical solution method are omitted. For the case
of 0° < y £ 90°, solutions were obtained only for ver-
tical plates (i.e. for y = 90°) from the system of equa-
tions (19)~21) or (37)-(39) with &, =0 or {, =0 by
the Runge-Kutta numerical integration scheme,
because the boundary layers for y = 90° are similar.
A combination of the two solutions, one for
0° <7 < 90° and the other for y = 90°, then covers
the entire range of inclination angles from horizontal
to inclined to vertical for both power-law variations
of the wall temperature and of the surface heat flux.

RESULTS AND DISCUSSION

Representative numerical results for both cases of
power-law variation of wall temperature and power-
law variation of surface heat flux will be illustrated
and discussed in this section. The results for the special
case of uniform surface heat flux will also be compared
with some available experimental data.

Power-law variation of wall temperature, T,(x)—
T, =ax"

The local wall shear stress 7, in terms of
7,(x?/5uv)(Gr,.cosy/5)~¥° and the local Nusselt num-
ber Nu, in terms of Nu(Gr.cosy/5)™"® as a function
of ¢ = (Gr, cos p/5)"'° tan y are shown, respectively, in
Figs. 1 and 2 for values of the exponent n of 0, 1/3
and 1, for both Pr = 0.7 and 7. As can be seen from
the figures, for a given value of n both the wall shear
stress and the surface heat transfer rate increase with
increasing values of £. That is, these two quantities
increase with increasing inclination angle y from the
horizontal for a given value of the local Grashof num-
ber Gr,, or with increasing local Grashof number Gr,
for a given inclination angle y. In addition, the surface

=35

T, (x5 V) (Gr, cO8V/5)

FiGg. 1. Local wall shear stress results for the case with
T (x)—T,=ax", Pr=0.7and 7.
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-1/

Nu, (Grxcos ¥/5)

Fi1G. 2. Local Nusselt number results for the case with
T (x)—T, = ax", Pr=0.7 and 7.

heat transfer rate, Fig. 2, is seen to increase with an
increase in n for a given value of £, with a larger Pr
yielding a higher transfer rate. These behaviors can
be better illustrated by Figs. 3 and 4 which show,
respectively for Pr = 0.7 and 7, the variation of the
local Nusselt number Nu, with the local Grashof num-
ber Gr, at various angles of inclination y for n =0,
1/3 and 1. The curve for y = 75 deg. is omitted in both

1471

Figs. 3 and 4 because of its closeness to the curve for
y =90 deg. (i.e. a vertical plate). These trends are to
be expected physically because, for a given n, as the
plate is tilted from the horizontal toward the vertical,
the buoyancy force becomes more pronounced, and
the stronger the buoyancy force the larger will be the
wall shear stress and hence the surface heat transfer
rate. One may also observe from Figs. 1 and 2 that at
a given value of n, while the local wall shear stress is
higher for fluids with Pr = 0.7 than for fluids with
Pr =1, the opposite is true of the local Nusselt
number. This trend is due to the fact that a smaller
Prandtl number Pr gives rise to a larger velocity gradi-
ent at the wall and hence a higher wall shear stress,
whereas a larger Prandtl number yields a larger wall
temperature gradient and hence a larger heat transfer
rate, as can be seen from the representative dimen-
sionless velocity and temperature distributions
shown, respectively, in Figs. 5 and 6 for £ values of 0,
16 and 80.

Inspection of Figs. 5 and 6 also reveals that for a
given &, the velocity gradient at the wall decreases,
whereas the wall temperature gradient increases, as
the value of # increases. This fact can help explain the
reason why for a given ¢ the local wall shear stress
decreases as » increases, Fig. 1. A similar behavior

LELRRALIL |
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Nu, 10°10'10°
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3
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Fig. 3. Local Nusselt number versus local Grashof number for various angles of inclination;
T (x)—T,=ax", Pr=0.7.
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FiG. 4. Local Nusselt number versus local Grashof number for various angles of inclination;
T,(x)—T, =ax",Pr=17.

has been observed by Sparrow and Gregg [15] in free
convection along a nonisothermal vertical plate.

The average Nusselt number results, as calculated
from equations (45) and (47), are illustrated in Fig. 7
in terms of [(n+3)/5]Nu(Gr cosy/5)~ > vs {,. Ascan
be seen from the figure, the behavior of the curves is
similar to that of the local Nusselt number curves,

Fig. 2.
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FiG. 5{a). Representative dimensionless velocity dis-
tributions at £ =0, 16, and 80; T (x)— T, = ax”, Pr=10.7.

Power-law variation of surface heat flux, ¢q.(x) = bx™

For this case, the local wall shear stress 7,,in terms
of 1, (x*/6uv)(Gr¥cosy/6)~ ' and the local Nusselt
number Nu, in terms of Nu (Gr¥cosy/6)~ "¢ as a
function of { = (Gr*cosy/6)"/°tany are illustrated,
respectively, in Figs. 8 and 9 for exponent values of
mof —0.4,0and 1 and Prof 0.7 and 7. The variation
of Nu, with Gr} at various angles of inclination y for

~2/5
/5y iBrcosY. 5)

f( M=

*

Fic. 5(b). Representative dimensionless velocity dis-
tributionsat & =0,16,and 80; T (x)— T, = ax", Pr=17.
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FiG. 6(a). Representative dimensionless temperature dis-
tributions at £ = 0, 16, and 80; T\ (x)—T,, = ax”, Pr = 0.7.
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F1G. 6(b). Representative dimensionless temperature dis-
tributions at £ = 0, 16, and 80; T (x)—~ T, = ax", Pr="1.

the three m values is illustrated in Fig. 10 for Pr = 0.7.
To conserve space, the corresponding figure for
Pr =7 is omitted. The trends and behaviors of these
curves are similar to those described for the case of
wall temperature variations because the effects
between the two are similar. Representative velocity

-1/5
Nu(Gr,cos¥/5)

n+3
5

s}
L 1 —1
0 10 20 30 40 50 60 70 B0

&

0 L 1 L I\

FIG. 7. Average Nusselt number results for the case with
T.(x)—T, = ax", Pr = 0.7 and 7.
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FiG. 8. Local wall shear stress results for the case with

g.(x) = bx™, Pr=0.7and 7.

and temperature profiles are shown in Figs. 11 and
12, again for Pr = 0.7 only, for { values of 0, 16 and
80, with m values of —0.4, 0 and 1. It is noted
here that the dimensionless temperature is given by
[T0x, )= T [Tu(x)— Tl = O, Y)/O(, 0).

Finally, the average Nusselt numbers evaluated
from equations (49) and (51) are shown in Fig. 13. In
the figure, the quantity [(m+4)/6]Nu(Gr¥ cosy/6)™ /¢
is plotted against {,. Again, the trend of the curves is
similar to that of the local Nusselt number curves,
Fig. 9.

Comparisons with available experimental results

A thorough comparison of the present numerical
results cannot be made with existing work, because no
numerical solutions or experimental data for natural
convection on inclined plates are available, except for
the limiting cases of uniform wall temperature (UWT,
n = 0) and uniform surface heat flux (UHF, m = 0).
The local Nusselt number results for the UHF case
from the present analysis are compared with the cor-
responding experimental results of Vliet [10], and
Shaukatuilah and Gebhart [8] for water in Table 1

-1/6

Nu, (GT,cos Y. 6)

L
0 S6 60 70 80

4

FiG. 9. Local Nusselt number results for the case with
qulx) = bx™, Pr=0.7and 7.
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FiG. 10. Local Nusselt number versus modified local Grashof number for various angles of inclination ;
qo(x) =bx", Pr=10.7.

and with those of Vliet and Ross [12] for air in Table
2, for two inclination angles of y = 30° and 75°. Vliet’s
results in water [10] give rise to the following cor-
relation equation for the range of inclination angles

30° < p < 85°
Nu, = 0.6(Pr Gr¥siny)®>. (61)

On the other hand, the experimental results of Shau-

. -1/3
(x/8¥)u(Gr,cosY 8}

FgY

Fi1G. 11. Representative dimensionless velocity distributions
at{ =0, 16, and 80; ¢,(x) = bx™, Pr=10.7.

katullah and Gebhart in water (Pr = 6) yield the fol-

lowing correlation equation [8]
Nu, = 0.864(Gr*siny)®2. (62)

The results for air obtained by Vliet and Ross have
been correlated as [12]

Nu, = 0.55(Pr Gr¥siny)®2.

(63)

ST-T/(T,~L)

SRV (4

FiG. 12. Representative dimensionless temperature dis-
tributions at { = 0, 16, and 80; ¢,(x) = bx™, Pr = (0.7.



Natural convection on horizontal, inclined, and vertical plates

1475

Table 1. A comparison between the present results and the experimental results of Vliet [10] and Shaukatullah and Gebhart
[8] for free convection to water from inclined plates under a uniform surface heat flux

y=30° y=175°
Nu, Nu,
Present Present
results Ref. [10] Ref. [8] results Ref. [10] Ref. [8]
Gr* @Pr=7 (Pr=7  (Pr=6) Gr* (Pr=T7) (Pr=T7) (Pr=6)
1.1972 x 10* 5.09 5.04 4.92 2.5619 x 10* 6.61 6.70 6.53
1.3675 x 10° 8.20 8.20 8.00 6.4600 x 10* 7.94 8.06 7.86
2.9228 x 10¢ 15.02 15.14 14.77 5.4910 x 10° 12.17 12.36 12.06
2.2008 x 107 22.42 22.67 22.12 4.1345x 10¢ 18.21 18.51 18.06
9.9412 x 107 30.27 30.65 29.91 3.5142 x 107 27.93 28.40 27.71
5.5856 x 10® 42.68 43.29 42.24 2.3749 x 10® 40.93 41.62 40.61
3.1384 x 10° 60.22 61.14 59.66 3.2358 x 10° 69.00 70.17 68.47
4 results presented, correlation equations for the local
Pr m Nusselt numbers, Nu,, as a function of Pr, Gr, or
- Gr¥, and y can be obtained. The correlation equations
S_°r for the cases of UWT and UHF are listed in the

Nu (G, cosY/8)

N

m+4
[]

FiG. 13. Average Nusselt number results for the case with
q.(x) =bx", Pr=0.7 and 7.

As can be seen from Tables 1 and 2, the agreement
between the present numerical predictions and the
experimental results [8, 10, 12] is very good.

Correlation equations for local and average Nusselt
numbers
A. Local Nusselt numbers. From the numerical

following :

For the UWT case:
15° <y <90°
Nu, = K,(Pr)(PrGr,siny)"*,
5% 10% < PrGr,siny < 5x10° (64)

where
3 2Pr 4
) [ 65
Ki#n) 4[5(1 +2Pr”2+21>r)] (63)
0°<y<15°
Nu, = K,(Pr)(PrGr,/5)"*+c®
10° < PrGr, < 10°, (66)
where
Pri

kP =555 i1em™

C(y) = 0.070(siny)"'%.

(67)

Table 2. A comparison between the present results and the experimental results of Vliet and
Ross [12] for free convection to air from inclined plates under a uniform surface heat flux

y =30° y=175°
Nu, Nu,
Present Present
results Ref. [12] results Ref. [12]
Gr* Pr=07 (Pr=0.7) Gr* Pr=0.7) (Pr=0.7)
1.1972x 10* 2.94 292 2.5619 x 10* 3.69 3.87
1.3637 x 10° 4.67 474 6.4600 x 10° 443 4.66
7.6620 x 10° 6.51 6.70 5.4910 x 10° 6.78 7.15
2.9228 x 10° 8.46 8.76 4.1345x 10°¢ 10.14 10.71
2.2008 x 107 12.57 13.11 3.5142x 107 15.54 16.43
9.9412 % 107 16.93 17.73 2.3749 x 10% 22.75 24.07
5.5856 x 10® 23.82 25.04 1.0094 x 10° 30.38 32.15
3.1384 x 10° 33.57 35.36 3.2358 x 107 38.34 40.59
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For the UHF case:
15° <y € 90°
Nu, = K,(Pr)(PrGr¥siny)'?,
5x10* < PrGrising < 5x 10'°,  (68)
where
K;(Pr) = [Pr/(4+9Pr'*+10Pn)]"* (69)
0P<y<15°
Nu, = K,(Pr)(PrGr/6)!/¢+P0,
10 < PrGr* < 10'°,  (70)

where

12

Kl = ai2m

D(y) = 0.038(siny) /2.

(7D

It is noted here that equations (64) and (68) are
modified forms of those given, respectively, in Refs.
[22, 23] for the vertical plates in which Gr, is
replaced with Gr siny and Gr¥ with Gr¥siny. It has
been found that the present numerical results correlate
well with equations (64), (66), (68) and (70) within a
maximum error of, respectively, 7%, 8%, 7% and 8%
for Prandtl numbers of 0.7 and 7. The maximum
errors occur at y near 15° for all correlation equations,
as is to be expected.

B. Average Nusselt numbers. Next, the correlation
equations for the average Nusselt numbers, Nu, can
be derived from the numerical results of equations
(45)—(48) and (49)—(52) or by a direct integration of
h from equations (64), (66), (68) and (70) to determine
# and then Nu in accordance with equation (44). This

latter approach gives rise to the following correlation
equations:

For the UWT case:
15° <y < 90°
Nu = (4/3)K,(Pr)(PrGr, siny)"/*,
5x10% < PrGr,siny < 5x10° (72)

0°<y<Is°

e K,(Pr)
Nu= 22" _(PrGr,[5)"5+<0,
s+ o
10° < PrGr, < 10°. (73)
For the UHF case:

15° <y < 90°
Nu = (5/4)K,(Pr)(Pr Gr¥siny)'/*,

5% 10* < PrGrEsiny < 5x 10" (74)
0°<y<15°

— K, (Pr)

Nu= */6)1/6+D0)
“= Aije+ Doy LT OHO T

10* < PrGr < 10'°. (75)

In equations (72)—(75), the Prandtl number dependent
coefficients K,(Pr), Ky(Pr), Ki(Pr) and K,(Pr) and
the angle dependent coefficients C(y) and D(y) are as
defined by equations (65), (67), (69) and (71). The
numerically calculated results from equations (45)-
(48) and (49)-(52) correlate well with equations (72),
(73), (74) and (75) within a maximum error of, respect-
ively, 10%, 8%, 9% and 5%. Again the maximum
errors occur at y near 15°.

Table 3. Nusselt number ratio (Nu,)ynr/(Nu,)uwr for inclined plates,
Pr=07and Pr=7

Pr=0.7 Pr=17

{ & (Nuy)uur 13 (Nu)unr

(NuJuwr (Nuuwr
0 0 1.292 0 1.260
1 1.089 1.226 0.980 1.178
2 2.144 1.197 1.920 1.155
4 4.200 1.172 3.747 1.141
6 6.213 1.162 5.535 1.137
8 8.197 1.156 7.299 1.134
10 10.162 1.153 9.045 1.132
20 19.791 1.147 17.604 1.129
30 29.218 1.145 25.985 1.128
40 38.517 1.144 34.251 1.128
50 47.722 1.143 42.435 1.128
60 56.854 1.143 50.555 1.127
70 65.924 1.143 58.617 1.127
80 74.943 1.142 66.635 1.127

o, =0) o =0) 1.141

(&, = 0) 1.127

Note: horizontal plates ({ = £ = 0)

; vertical plates ({, = &, = 0).
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Comparisons of results between UWT and UHF cases

The Nusselt number ratios (Nu,)yne/(Nuywr as a
function of { or ¢ between the UHF and the UWT
cases are tabulated in Table 3 for both Pr = 0.7 and
7. It is observed from the table that the Nusselt num-
ber ratio is always larger than unity, that it decreases
with increasing values of { (i.e. increasing Gr¥ for a
given y or increasing y for a given Gr¥), and that
the ratio is larger for Pr=0.7 than for Pr="7. In
addition, as the plate is tilted from a horizontal to a
vertical orientation, the Nusselt number ratio
(Nu)uur/(Nu)uwr decreases from 1.292 to 1.141 for
Pr = 0.7 and from 1.260 to 1.127 for Pr = 7. A similar
comparison of the Nusselt number ratios was per-
formed by Sparrow and Gregg [15] for a vertical plate.

CONCLUSIONS

In this paper, natural convection in laminar bound-
ary layer flows over horizontal, inclined and vertical
flat plates has been studied analytically for two surface
heating conditions, the power-law variation of the
wall temperature and the power-law variation of the
surface heat flux. The major findings of the study can
be summarized as follows:

(1) Both the local wall shear stress and the local sur-
face heat transfer rate increase with increasing &
or { (i.e. increasing Gr, or Gr* for a given y or
increasing y for a given Gr, or Gr¥) for a given
value of the exponent r or m and a given Prandtl
number Pr.

(2) The local surface heat transfer rate increases with
increasing value of the exponent »n or m for a given
& or {, but this trend is reversed for the local wall
shear stress in terms of (&, 0) or F'({, 0).

(3) For a given & or { and a given exponent n or m,
the local surface heat flux increases whereas the
local wall shear stress decreases with increasing
Prandtl number.

(4) The behavior of the average Nusselt numbers is
similar to that of the local Nusselt numbers for all
the cases that were investigated.

In addition to the above findings, general cor-
relation equations for the local and average Nusselt
numbers that cover various angles of inclination y and
Prandtl numbers (in particular for Pr of 0.7 and 7)
are obtained for the special cases of uniform wall
temperature (UWT) and uniform surface heat flux
(UHF). The correlation equations agree well with cal-
culated numerical results within a maximum error of
less than 10%. A comparison between the UHF and
UWT cases reveals that the local Nusselt number for
the UHF case, (Nu,)uus, is greater than that for the
UWT case, (Nu,)ywr, by some 29 to 14% for a Prandtl
number of 0.7 and some 26 to 13% for a Prandtl
number of 7. A comparison between the present
numerical results and available experimental data for
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the case of uniform surface heat flux is also made. The
agreement between the two is found to be very good.
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CONVECTION NATURELLE SUR DES PLAQUES HORIZONTALES,
INCLINEES OU VERTICALES AVEC DES FLUX DE CHALEUR OU DES
TEMPERATURES PARIETAUX VARIABLES

Résumé—On conduit une analyse pour étudier les caractéristiques dynamiques et thermiques des écou-
lements laminaires de convection naturelle avec couche limite sur des plans horizontaux, inclinés ou
verticaux avec une température pariétale T,(x) ou le flux thermique pariétal ¢,(x) varie comme une
puissance de 'ordonnée axiale selon T,(x) = T,,+ax" ou ¢, = bx™. Les équations de base sont d’abord
mises sous forme adimensionnelle par une transformation de non similitude et les équations résultantes
sont ensuite résolues par une méthode de différences finies. Des résultats numériques pour des fluides &
nombre de Prandtl entre 0,7 et 7 sont présentés pour trois valeurs d’exposant dans chacune des conditions
de surface. On trouve que la tension a la paroi et le taux de transfert thermique augmentent tous les deux
quand I'angle d’inclinaison y a partir de 'horizontale augmente ou quand le nombre de Grashof local
croit. L’augmentation de la valeur de I'exposant # ou m favorise le transfert, mais elle cause une diminution
de la contrainte parictale. Des équations sont obtenues pour les nombres de Nusselt locaux et globaux
dans les cas spéciaux de température uniforme (UWT) 4 la paroi et de flux de chaleur uniforme (UHF).
Des comparaisons de nombre de Nusselt sont faites pour les cas UHF entre les présents résultats et les
données expérimentales et on constate un bon accord entre eux.

NATURLICHE KONVEKTION AN HORIZONTALEN, GENEIGTEN UND VERTIKALEN
PLATTEN MIT VARIABLER O}}ERFLACHENTEMPERATUR ODER VARIABLER
WARMESTROMDICHTE

Zusammenfassung—Es wird eine Untersuchung der Strémungs- und Wirmetibergangscharakteristiken bei
natiirlicher laminarer Konvektion in Grenzschichtstrémungen an horizontalen, geneigten und vertikalen
ebenen Platten durchgefiihrt, wobei die Wandtemperatur T,(x) oder die Oberflichenwirmestromdichte
¢.(x) mit der Potenz der axialen Koordinate x in der Form T,(x) = T, +ax” oder g, = bx™ anwichst.
Die Erhaltungssitze werden zuerst durch eine nichtkonforme Transformation in dimensionslose Form
gebracht, und die so erhaltenen Gleichungen werden mit einem Differenzenverfahren geldst. Numerische
Ergebnisse fiir Fluide mit Prandtl-Zahlen von 0.7 und 7 werden fiir drei reprisentative Werte der Expo-
nenten fiir beide genannten Oberflichenbedingungen vorgelegt. Es zeigte sich, daB sowohl die &rtliche
Wandschubspannung als auch der 6rtliche Wirmeiibergang mit ansteigendem Neigungswinkel y von der
Horizontalen und mit ansteigender Ortlicher Grashofzahl zunehmen. Ein Anstieg in den Werten der
Exponenten n oder m erhoht den Wirmeiibergang, aber reduziert die Wandschubspannung. Kor-
relationsgleichungen fiir die ortlichen und mittleren Nusselt-Zahlen werden fir die Spezialfille der ein-
heitlichen Wandtemperatur (UWT) und der einheitlichen Warmestromdichte (UHF) ermittelt. Die
vorliegenden Ergebnisse fiir die 6rtlichen Nusselt-Zahlen werden mit verfiigbaren experimentellen Daten
fiir den UHF-Fall verglichen, wobei gute Ubereinstimmung festgestellt wird.

ECTECTBEHHAS KOHBEKLMS HA T'OPHM3OHTAJIBHbBIX, HAKJIOHHbIX U
BEPTUKAJIBHBIX ITJIACTHHAX C USMEHAIOUIUMUCA TEMITIEPATYPOUN
MOBEPXHOCTH UJIM TEITJIOBbBIM IMOTOKOM

AHHOTANRA—AHAM3MPYIOTCS XAPAKTEPHCTHKN JJAMHHAPHOTO CBOOOJIHOKOHBEKTHBHOIO TEYEHHS W TeM-
JIOOOMEHA B PEXUME MOTPAHHMYHOTO CJI0S OT FOPU3OHTAJbHBIX, HAKJIOHHBIX M BEPTUKAJILHBIX IUIACTHH,
TEMAEPATYPAa CTEHKH KOTOpbiX T,(X) WIH TEMIOBOH HOTOK ¢,(X) H3MEHSAIOTCA NO CTENEHHOMY 34KOHY
T(x) =T, + ax" mm q,, = bx™ Onpenensiolme ypaBHEHHs C IOMOUILIO HEABTOMOAEJILHOIO fpeobpa-
30BaHUS NPUBOAATCSA CHavana K Oe3pa3MepHOMYy BHIy, a 3aTEM DELIAIOTCH KOHEYHOPA3HOCTHBIM
MeTonoM. YucseHHble pe3ybTaThl Mg XHAKocTed ¢ yucaamu [Mpauarias 0,7 u 7 npeacrasrieHbl 1715
Tpex 3HAYeHWH NMoKa3aTens CTENEHH MPH KaXIAOM H3 YCJOBHH HEOJHOPOJHOIO HATPEBa NOBEPXHOCTH.
HaijigeHo, 4T0 JIOKAIbHOE KAcATeNlbHOE HANPsSXKEHHe HA CTeHKe M NOKaJbHbIN K03(DGdHUHEHT Termnoob-
MEHa Ha NMOBEPXHOCTH YBEJIMYMBAIOTCH C POCTOM YIJla OTKJIOHEHUS! OT FOPHU3OHTANM  WIH JOKAJIbHOTO
ypcna [pacroda. YBennvuenue n Wid m ycuiaubaeT KodPpduuueHT TennooOMeHa HA CTEHKE, HO YMEHb-
LIAET KacaTesIbHOE HANpshkeHHe Ha cTeHke. Koppelsauuu as JoKalabHOToO H ocpeaHeHHoro uucen Hycce-
JbTa MOJIyYEHb! 1A Cily4Yaes ONHOPOAHOH TeMIepaTypbl CTEHKH W ONHOPOJHOIO TEMJIOBOrO MOTOKA Ha
nosepxHocTH. [TonyyeHHble 3HA4EHUA JOKalbHbIX 4Kcen HyccenbTa cpaBHHMBAIOTCA € HMEHOLMMHUCH
IKCIIEPHMEHTAJIbHBIMHY JAHHBIMH U1 BTOPOTO CJly4asi, HaiiAeHO MX XOopollee COOTBETCTBHE.



