
hf. J. Hear Maw Transfir. Vol. 29, No. 10, pp. 1465-1478, 1986 

Printed in Great Britain 

0017-9310/86$3.00+0.00 

Pergamon Journals Ltd. 

Natural convection on horizontal, inclined, 
and vertical plates with variable surface 

temperature or heat flux 
T. S. CHEN, H. C. TIEN and B. F. ARMALY 

Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, 
MO 65401, U.S.A. 

(Received 18 June 1985 and injinalform 11 February 1986) 

Abstract-An analysis is performed to study the flow and heat transfer characteristics of laminar free 
convection in boundary layer flows from horizontal, inclined, and vertical flat plates in which the wall 
temperature TV(x) or the surface heat flux q&) varies as the power of the axial coordinate in the form 
T,(x) = T,+ax” or qy = bx”. The governing equations are first cast into a dimensionless form by a 
nonsimilar transformation and the resulting equations are then solved by a finite-difference scheme. 
Numerical results for fluids with Prandtl numbers of 0.7 and 7 are presented for three representative 
exponent values under each of the nonuniform surface heating conditions. It has been found that both the 
local wall shear stress and the local surface heat transfer rate increase as the angle of inclination from the 
horizontal y increases or as the local Grashof number increases. An increase in the value of the exponent 
n or m enhances the surface heat transfer rate, but it causes a decrease in the wall shear stress. Correlation 
equations for the local and average Nusselt numbers are obtained for the special cases of uniform wall 
temperature (UWT) and uniform surface heat flux (UHF). Comparisons are also made of the local Nusselt 
numbers between the present results and available experimental data for the UHF case, and a good 

agreement is found to exist between the two. 

INTRODUCTION 

HEAT TRANSFER by natural convection is frequently 
encountered in our environment and in engineering 
devices. Natural convection arises from the buoyancy 
force induced by density differences in a fluid. Lami- 
nar free convection along horizontal, inclined and 
vertical plates with uniform surface temperature or 
uniform surface heat flux has been extensively studied 
analytically (see, e.g. Refs. [l-7]). There are also 
experimental investigations on natural convection 
from vertical, inclined, and horizontal surfaces, cover- 
ing both laminar and turbulent regimes under either 
a constant-wall-temperature or a constant-surface- 
heat-flux condition, such as those studies cited in Refs. 
[8-131. However, these analytical and experimental 
studies [l-13] were conducted under the situations of 
uniform thermal boundary conditions. 

In a large number of technical applications, the 
surface heating conditions are nonuniform and the 
induced buoyant flow is laminar. This accounts for 
the fact that laminar free convection with nonuniform 
surface heatings has also received considerable atten- 
tion in the past. Sparrow [14] formulated the boun- 
dary-layer problem for free convection along a non- 
uniformly heated vertical flat plate by the Karman- 
Pohlhausen method and obtained solutions by a series 
expansion technique. Similarity solutions for free con- 
vection on a nonisothemral vertical plate were provided 
by Sparrow and Gregg [ 151. Subsequently, Yang [ 161 
conducted a study of laminar free convection on non- 
isothermal vertical plates and cylinders to establish 

various conditions under which a similarity solution 
exists. A Giirtler-type series expansion has also been 
tried by Kelleher and Yang [17]. Later, Kao et al. 
[ 181 developed a technique for the solution of free 
convection on a nonisothermal vertical flat plate by 
employing local similarity as a first approximation 
and universal functions for improvement. More 
recently, Yang et al. [19] applied appropriate coor- 
dinate transformations and the Merk-type series to 
solve a similar type of free convection problems. The 
problem of laminar free convection along a non- 
isothermal vertical plate with blowing or suction was 
studied by Huang and Chen [20]. The aforementioned 
investigations involving nonuniform surface heatings 
[14-201 are for flow along a vertical flat plate. The 
problems of free convection on horizontal and 
inclined flat plates with nonuniform thermal con- 
ditions have not received attention. This has motiv- 
ated the present study. 

In the present paper, laminar free convection along 
horizontal, inclined and vertical flat plates with 
power-law variation of the wall temperature or with 
power-law variation of the surface heat flux is 
analyzed. The boundary layer equations pertinent 
to this problem contain both effects of streamwise 
buoyancy force component and buoyancy-induced 
streamwise pressure gradient in the momentum 
equations. The governing system of equations is first 
transformed into a dimensionless form and the result- 
ing equations are then solved by a finite-difference 
method. Numerical solutions are obtained for fluids 
having Prandtl numbers of 0.7 (such as air) and 7 (such 
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NOMENCLATURE 

a dimensional constant in the power-law x axial coordinate 
variation of the wall temperature Y normal coordinate 

b dimensional constant in the power-law Y, Y, pseudo-similarity variables defined, 
variation of the surface heat flux respectively, by equations (26) and 

C angle dependent function in equation (35). 
(67) 

D angle dependent function in equation Greek symbols 

(71) thermal diffusivity 

L fl reduced stream functions defined, ; volumetric coefficient of thermal 
respectively, by equations (9) and (18) expansion 

F,F, reduced stream functions defined, Y angle of inclination from the horizontal 
respectively, by equations (27) and (36) C,C, nonsimilar parameters defined, 

9 gravitational acceleration respectively, by equations (31) and 
Gr,, Gr, Grashof numbers defined, respectively, (40) 

as g/I[T,(x)- TJx3/v2 and LA IL nonsimilar parameters defined, 

sPV&) - T&J3/vZ respectively, as (Grf cos y/6) ‘/6 tan y 
Gr:, Grf modified Grashof numbers defined, and (Gr$ sin y/5)- “’ cot y 

respectively, as gjq,,,(x)x4/kv2, and %rl I pseudo-similarity variables defined, 

s8%v(O~4/kv 2 respectively, by equations (8) and 
h local heat transfer coefficient, (17) 

%Ax)l[~&) - 7-A (UJl dimensionless temperatures defined, 
t? average heat transfer coefficient defined respectively, by equations (9) and 

by equation (44) (18) 
k thermal conductivity o,o, dimensionless temperatures defined, 
K,,K2,K3,K4 Prandtl number dependent respectively, by equations (27) and 

coefficients defined, respectively, by (36) 
equations (65), (67), (69) and (71) p dynamic viscosity 

L length of plate in the flow direction kinematic viscosity 
m exponent in the power-law variation of ;A nonsimilar parameters defined, 

the surface heat flux respectively, by equations (13) and 
n exponent in the power-law variation of (22) 

the wall temperature LA IL nonsimilar parameters defined, 

N% local Nusselt number, hx/k respectively, as (Gr, cos y/5) ” 5 tan y 
Nu average Nusselt number, t’iL/k and (Gr, sin y/4)- ‘I4 cot y 

P static pressure difference P density of fluid 
Pr Prandtl number, V/U r, local wall shear stress, p(&/LJy),= O 

4w local surface heat transfer rate per unit I/J stream function. 
area, -k(~YT/c3y)~=, 

T fluid temperature Subscripts 
24 axial velocity component W condition at the wall 
V normal velocity component cc condition at the free stream. 

as water) for three representative exponent values of 
the power-law variation in either the wall temperature 
or the surface heat flux. 

ANALYSIS 

Consider a semi-infinite flat plate that is inclined 
from the horizontal with an acute angle y and is situ- 
ated in an otherwise quiescent ambient fluid at tem- 
perature T,. The x coordinate is measured from the 
leading edge of the plate and they coordinate is meas- 
ured normally from the plate to the fluid. Two surface 
heating conditions will be considered in the analysis : 

(1) a power-law variation of the wall temperature, 
T,(x) - T, = ax” and (2) a power-law variation of the 
surface heat flux, SW(x) = bx” ; where a and b are 
dimensional constants and m and n are exponents. 
The gravitational acceleration g is acting downward. 
For simplicity, the analysis will be presented for the 
case of fluid above a hot flat surface. This analysis will 
also be valid for the case of fluid below a cold flat 
surface. 

In the analysis to follow, the fluid properties are 
assumed to be constant except for the density vari- 
ation that induces the buoyancy force. With this 
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assumption and the application of the Boussinesq 
approximation, the governing conservation equations 
for laminar boundary layer flows can be written as 

!?+aV=O 
ax ay 

u: +u$ = - f 2 +gPsin y(T-TT,)Cr$ (2) 

0 = - f ; +g/?cosy(T--T,) (3) 

ar ar a2T 
uz +u;i-; = aay2, (4) 

where the conventional notations are defined in the 
Nomenclature. It must be pointed out, however, that 
p is the static pressure difference induced by the buoy- 
ancy force (i.e. p = 0 outside the boundary layer). The 
x-momentum and y-momentum equations, equations 
(2) and (3), can be combined by finding the buoyancy- 
induced streamwise pressure gradient from equation 

(3) as 

dinates [T(x), ~(x, y)] by introducing 

< = 5(x), rl = Cv/x)(GrXcosy/5)“s, (8) 

where 5, depending only on x, is the nonsimilar par- 
ameter and q is a pseudo-similarity variable. For a 
similar boundary layer, 5 = 0 and 9 reduces to a true 
similarity variable. One also introduces a reduced 
stream function f(& q) and a dimensionless tem- 
perature 6(& r~) defined, respectively, by 

f(k1) = 
IL(x, Y) 

Sv(Gr, cos r/5) ‘js ’ 

T- T, 
(9) 

O(& V) = 
T,(x) - T, ’ 

in which Gr, is the local Grashof number and 
the stream function $(x, y) satisfies the continuity 
equation (1) with u = a$/@ and v = -&,b/i3x. 

Substituting equations (8) and (9) into equations 
(6), (4) and (7), one obtains the following system of 
equations 

1 ap 
-=g/?cosy; m(T-Tm)dy. 

- j ax s 
(5) 

Y 
+ f 

a, 
(2-n)q0+(4n+2) 

s 
6d?+(n+3)5 

mae 

‘t s 1 ‘I zdV 

This leads to 

u$ +v; =gj?cosy; m(T-T,)dy 

+gflsiny(T-T,)+v$. (6) 

The boundary conditions for the present problem are with the boundary conditions 

u=o=O, T= T,(x)= T,+ax” f(570) =f'(LO) =f'(5, a) = 0; 
or qW(x) = bx” at y = 0 (7) eg,o) = 1, e(t,ag = 0. (12) 

u+O, T-+T, as t-+cO. 

It is noted here that equation (6) reduces to that for 
a vertical plate without the buoyancy-induced stream 
pressure gradient term when y = 90” and to that for 
a horizontal plate without the buoyancy force term 
when y = 0”. The case of uniform wall temperature 
(UWT) corresponds to n = 0, whereas that of uniform 
surface heat flux (UHF) to m = 0. 

Next, the system of equations (6), (4) and (7) will 
be transformed into a dimensionless form, separately 
for the cases of power-law wall temperature variation, 
T,,,(x)- T, = ax”, and power-law surface heat flux 
variation q,(x) = bx”. Owing to the inclination of the 
plate, the boundary layers are nonsimilar. This point 
will become clear later. 

In the foregoing equations, the primes denote partial 
differentiations with respect to q, Pr is the Prandtl 
number, and c is found to have the following 
expression 

5 = (Gr,cosy/5)“5tany. (13) 

The physical quantities of interest include the local 
Nusselt number Nu, = hx/k, the local wall shear stress 

r, = p(au/aY)Y= 0, the axial velocity distribution u, and 
the temperature distribution tI(& q). The first three 
can be expressed, respectively, by 

Nu, = -0‘(& O)(Gr,cos y/S)"' (14) 

z, = 5(pv/x2)(Gr,cos y/5)‘15f “(r, 0) (15) 

ux/v = S(Gr,cos 7/5)“‘f ‘(5, q). (16) 

It is noted here that the case of uniform wall tem- 
perature (UWT) corresponding to n = 0 has been 
treated in Ref. [7]. It is also noted here that the bound- 
ary layers become similar and equations (10x12) 
reduce to a system of ordinary differential equations 
when 5 = 0 (i.e. y = O”, the horizontal plate) or when 

Power-law variation of wall temperature, T,,,(x) - 
T,=ax” 

A. Horizontal-inclined plate orientation (O” < y -C 
90’). Equations (6), (4) and (7) can be.transformed 
from the (x, y) coordinates to the dimensionless coor- 

= (n+3)C(f$f$) (10) 

&s.+(n+3)f8’-5nfV = (n+3)C 
( at at) 
fJ%$ 

(11) 
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5 is a constant, independent of x. The latter situation 
arises for an inclined plate when n = - 3. 

B. Vertical-inclinedplate orientation (0’ < y < 90’). 
Equations (lOHl2) become invalid when y = 90” (i.e. 
for a vertical plate) because for this case 5 = co. To 
provide a system of equations that are valid for ver- 
tical and inclined plates, with the angle of inclination 
(x/2-y) from the vertical, a separate analysis needs 
to be performed. To this end, one introduces 

and 

5 I = t dx), v I = Cv/x)(Gr, sin y/4) Ii4 (17) 

fl(5 I?? I) = 
Ic/kY) 

4v(Gr, sin y/4) ‘I4 ’ 

e,(t,,s,) = *-*, 

(18) 

*w(x) - *m 

in which sin y arises from cos (n/2-y). The trans- 
formation of equations (6), (4) and (7) leads to 

1 

s 

m 
+8,+ -5, 

4 
(1 -n)rl,Q,+(%r+l) old?, 

‘11 

(19) 

= (n+3)5, + e; $ -f; $ 
( I J 

(20) 

f;(5’90) =fd51,0) =f\(C,, co) = 0; 

uw) = 1, w,, 4 = 0, (21) 

in which the primes now stand for partial derivatives 
with respect to r~, . The nonsimilar parameter 5, now 
has the expression 

5, = (Gr,siny/4)-“4coty. (22) 

The expressions for the local Nusselt number Nu,, 
the local wall shear stress z,, and the axial velocity 
distribution can be found as 

Nu, = -0’,(5 ,, 0)(Gr,siny/4),‘4 

r, = 4(pv/x2)(GrX siny/4)3’4f’i({ ,, 0) 

ux/v = 4(Gr,siny/4)“2~‘,(~,,0). 

(23) 

(24) 

(25) 

It is noted here that the case of UWT with n = 0 
has been given in Ref. [5]. In addition, for both an 
inclined plate with c, = constant (i.e. n = -3) and a 
vertical plate (y = 90’) with 5, = 0, equations (19)- 
(21) reduce to a system of ordinary differential equa- 
tions. This gives rise to a similar boundary layer 
problem for both cases. 

Finally, through a combination of the above two 
treatments, free convection of inclined plates for the 
case of power-law wall temperature variation can be 
covered for all angles of inclination, 0” < y < 90”. 

Power-law variation of surface heatflux, qW = hx” 
A. Horizontal-inclined plate orientation (0” < y < 

90“). For this case, let 

< = c(x), Y = (j/x)(Gr:cos y/6)‘j6 (26) 

FK’, Y) = 
‘t@> Y) 

6v(Gr:cos y/6) “6 ’ 

oc5 r) = CT- *m)(Gr,*cosy/6)“6 

q&)x/k 

(27) 

be, respectively, the dimensionless coordinates, 
stream function and temperature, where Gr,* is the 
modified Grashof number. Substitution of equations 
(26) and (27) into equations (6) (4) and (7) yields 

+4(m+1) w 
s 

aao 

Y 
OdY+(m+4)5 y ZdY 

s 1 
= (m+4)[ (28) 

;W+(m+4)FQ’-(Sm+2)F’Q 

(29) 

F([, 0) = F’([, 0) = F’(c, cc) = 0 ; 

O’(i,O) = - 1, O(i, co) = 0 (30) 

in which [ can be found to have the expression 

c = (Gr,*cos y/6) ‘j6 tan y (31) 

and the primes denote partial derivatives with respect 
to Y. 

The local Nusselt number Nu,, the wall shear stress 
z,, and the axial velocity distribution u are now given 
respectively by 

Nu, = (Gr,*cos y/6) ““/O(c, 0) (32) 

r, = 6(uv/x*)(Gr:cos y/6) ‘/‘F”([, 0) (33) 

ux/v = 6(Gr:cos y/6) ‘!‘F’([, Y). (34) 

For both an inclined plate with c = constant (i.e. 
m = -4) and a horizontal plate with c = 0 (i.e. y = 0”) 
equations (28H30) become a system of ordinary 
differential equations and the boundary layers are 
thus similar. The case of uniform surface heat flux 
corresponds to m = 0. 

B. Vertical-inclinedplate orientation (0’ < y < 90’). 
When y = 90” (i.e. for a vertical plate), the system of 
equations (28)-(30) does not hold because 5 becomes 
infinity. For this reason, a separate analysis is carried 
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out to provide a system of transformed equations for 
the vertical-inclined orientation. 

By introducing for this case 

I:, = c,(x), Y, = (_v/x)(Grfsiny/5)‘/5 (35) 

d4x9 Y) 
F’(r” “) = Sv(Gr,*sin $/5) l/5 ’ 

@,([,, y,) = (7-- r,d($x;;Y/5),‘5, (36) 

W 

a transformation of equations (6), (4) and (7) results 
in 

F;‘+(m+4)F,F;-(2m+3)F;Z+0,+ $, 

s 

m 
x (1 -m)Y,O,+(3m+2) O,dY,-(m+4)(, 

YI 

xj?$dY,]=(m+4)+‘$ -F;$) (37) 

F;(I I, 0) = F,(l I, 0) = F;(l I, co) = 0 ; 

@‘,(C,,O) = - 1, @,K,, 00) = 0, (39) 

in which the primes stand for partial differentiations 
with respect to Y, and the nonsimilar parameter [, 
has the expression 

c I = (Grfsin y/5)- ‘Is cot y. (40) 

The local Nusselt number, the local wall shear stress, 
and the axial velocity distribution u are expressible as 

Nu, = (Gr,*siny/5),‘5/0,([,, 0) (41) 

z, = 5@/x*)(Gr,*sin Y/~)~‘~F’;([ ,, 0) (42) 

ux/v = 5(Gr,*sin y/5)2’5F’,(i,, Y,). (43) 

For both a vertical plate (y = 90’) with i, = 0 and 
an inclined plate with [, = constant (i.e. m = -4), 
equations (37)-(39) reduce to a system of ordinary 
differential equations and the boundary layers become 
similar. 

A combination of the above two treatments will 
then cover the entire inclination angles, 0” < y f 90”, 
for free convection on inclined plates under the power- 
law variation of surface heat flux. 

Average Nusselt numbers 
It is of practical interest to determine the average 

heat transfer coefficient /ior the average Nusselt num- - 
ber Nu for heat transfer calculations. These two quan- 
tities are defined, respectively, by 

j&L Lb& F25 
L,, ’ ’ k’ s 

(4) 

where L is the length of plate in the flow direction. 

HlFT 29:10-n 

The expressions for the average Nusselt numbers are 
as follows : 

A. For T,(x) - T, = ax” 

0” < y < 90” 

Nu(Gr,cosy/5)-“5 = &5;’ 
s 

“1-Q’(C,O)ld5 
0 

(45) 

0 < y ,< 90” 

%(Gr, sin y/4)- ‘I4 

4 5 
(IL 

= - n+3 IL s 
t;‘[-@‘,(t,,‘Nd5,. (46) <l,,0 

In equations (45) and (46), Gr,, tL, and r,, are, 
respectively, Grx, (, and lI evaluated at x = L. For 
y = 0” and y = 90”, the corresponding equations are 

and 

%(Gr,/S)-IiS = &WV)1 (47) 

%(Gr,/rl)- Ii4 = $jvl@)1. (48) 

B. For qw(x) = bx” 

0” < y < 90” 

- 
Nu(Grfcos y/6)- ‘I = $llnr, P(l, WI - ’ & 

(49) 

o<y<90 

%(GrTsin y/5)- ‘I5 

The Grj!, CL, and clL in the above equations are, 
respectively, Grz, [, and [, evaluated at x = L. For 
y = 0” and y = 90”, the corresponding Nusselt num- 
ber expressions are 

Nu(Grf/6)- ‘P = &&ww’ (51) 

%(Grf/5)-“5 = $p*(or’. (52) 

Comparison between U WT and UHF cases 
The cases of power-law variation of the wall tem- 

perature and the surface heat flux can be simplified to 
the uniform wall temperature (UWT) case when n = 0 
[3, 5, 71 and to the uniform surface heat flux (UHF) 
case when m = 0. It is of interest to compare the 
results between UWT and UHF cases. This will be 
done for the local Nusselt number later when the 
numerical results are presented. 

To facilitate the comparison, one needs to define an 
equivalent Grashof number for the UHF case in terms 
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of the local wall temperature T,(x) as 

(Gr,), = &V,(x) - ~,lx31v2, 

where 

(53) 

T,(x) - T, = (q,x/k)(Gr:cos y/6) - ““O([, 0) (54) 

from equation (27). Substituting equation (54) into 
equation (53), one obtains 

(Gr,),cos y = 6”6(Gr,*cos y)%(c, 0). (55) 

With the use of equations (14), (32) and (55), the 
Nusselt number ratio between the two heating con- 
ditions, UWT and UHF, assumes the form 

WJUHF (5/6) “’ 

~ = [ - eyt, O)][O(~, O)]“” W&WT 
(56) 

Before the Nusselt number ratio can be determined, 
the relationship between 5 and [ needs to be estab- 
lished. From the expressions for r and [, equations 
(13) and (31), it can be shown that 

5 = (6/5) “‘<[O(<, 0)] “5 (57) 

under the condition Gr, = (Gr,),. 
It is noted that equations (54)-(57) are valid for 

any angle except y = 90” (i.e. a vertical plate). As for 
vertical and inclined plates, the following equations 
for comparisons between the UWT and UHF cases 
can be obtained in a similar manner : 

(Gr,),siny = 5’15(Gr.~siny)4’50,(i,,0) (58) 

W&HF (4/5) “4 

-= [o,(~,,o)]5’4[-e;(~,,o)]’ (59) (Nu,),,, 

Here the relationship between 5, and < 1 is given by 

5, = (4/5)“41,[o,(1,,0)1~‘!4. (60) 

METHOD OF SOLUTION 

The system of equations for the power-law vari- 
ation of wall temperature, equations (lOH12), and 
the system of equations for the power-law variation 
of surface heat flux, equations (28)+30), both of 
which are valid for 0” < y < 90”, were solved by a 
finite-difference method modified from that described 
in Ref. [21]. In this method, the partial differential 
equations (10)-(12) or (28)-(30) are first reduced to a 
system of first-order equations which are then ex- 
pressed in finite-difference form and solved along with 
their boundary conditions by an iterative scheme. The 
solutions start with 5 = 0 or [ = 0, which are obtained 
by a fourth-order Runge-Kutta integration method 
with a proper step size Arl or AY. With the solutions 
for 5 = 0 or [= 0 available for 0 < rl < I], or 
0 < Y < Y,, where q, and Y, are the dimensionless 
boundary layer thicknesses respectively for the cases 
of power-law variation of wall temperature and 
power-law variation of surface heat flux, one proceeds 

to the first 5 > 0 or [ > 0 location with a proper step 
size At: or At and obtains a converged solution for 
the interval 0 < r) < qra or 0 ,< Y < Y, at that 5 or [ 
location by iterations, and so on, by marching in the 
5 or [ direction. To conserve space, the details of the 
numerical solution method are omitted. For the case 
of 0” < y < 90”, solutions were obtained only for ver- 
tical plates (i.e. for y = 90’) from the system of equa- 
tions (19H21) or (37)-(39) with 5, = 0 or [, = 0 by 
the Runge-Kutta numerical integration scheme, 
because the boundary layers for y = 90” are similar. 
A combination of the two solutions, one for 
0” < y < 90” and the other for y = 90”, then covers 
the entire range of inclination angles from horizontal 
to inclined to vertical for both power-law variations 
of the wall temperature and of the surface heat flux. 

RESULTS AND DISCUSSION 

Representative numerical results for both cases of 
power-law variation of wall temperature and power- 
law variation of surface heat flux will be illustrated 
and discussed in this section. The results for the special 
case of uniform surface heat flux will also be compared 
with some available experimental data. 

Power-law variation of wall temperature, T,(x)- 
T, = ax” 

The local wall shear stress TV in terms of 
z,(x2/5pv)(Gr,cosy/5)- ‘I5 and the local Nusselt num- 
ber Nu, in terms of Nu,(Gr,cosy/5)-“’ as a function 
of 5 = (Gr, cos y/5)“’ tan y are shown, respectively, in 
Figs. 1 and 2 for values of the exponent n of 0, l/3 
and 1, for both Pr = 0.7 and 7. As can be seen from 
the figures, for a given value of n both the wall shear 
stress and the surface heat transfer rate increase with 
increasing values of 5. That is, these two quantities 
increase with increasing inclination angle y from the 
horizontal for a given value of the local Grashof num- 
ber Gr,, or with increasing local Grashof number Gr, 
for a given inclination angle y. In addition, the surface 

0 10 20 30 40 50 50 70 HO 

c 

FIG. 1. Local wall shear stress results for the case with 
T,,,(x) - T, = ax”, Pr = 0.7 and 7. 
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I I 1 I , I I I I 

I 
” P? 
1 

-0.7 7 1137 -- -1 1 --7 / A-- /---- 0 \ L/--_ _--- -- _-- 1 

L 1 I I I I 1 I J 
0 10 20 30 40 50 60 70 80 

t 

FIG. 2. Local Nusselt number results for the case with 
T,(x)- T, = ax”, Pr = 0.1 and 7. 

heat transfer rate, Fig. 2, is seen to increase with an 
increase in n for a given value of 5, with a larger Pr 

yielding a higher transfer rate. These behaviors can 
be better illustrated by Figs. 3 and 4 which show, 
respectively for Pr = 0.7 and 7, the variation of the 
local Nusselt number Nu, with the local Grashof num- 
ber Gr, at various angles of inclination y for n = 0, 
l/3 and 1. The curve for y = 75 deg. is omitted in both 

Figs. 3 and 4 because of its closeness to the curve for 
y = 90 deg. (i.e. a vertical plate). These trends are to 
be expected physically because, for a given n, as the 
plate is tilted from the horizontal toward the vertical, 
the buoyancy force becomes more pronounced, and 
the stronger the buoyancy force the larger will be the 
wall shear stress and hence the surface heat transfer 
rate. One may also observe from Figs. 1 and 2 that at 
a given value of n, while the local wall shear stress is 
higher for fluids with Pr = 0.7 than for fluids with 
Pr = 7, the opposite is true of the local Nusselt 
number. This trend is due to the fact that a smaller 
Prandtl number Pr gives rise to a larger velocity gradi- 
ent at the wall and hence a higher wall shear stress, 
whereas a larger Prandtl number yields a larger wall 
temperature gradient and hence a larger heat transfer 
rate, as can be seen from the representative dimen- 
sionless velocity and temperature distributions 
shown, respectively, in Figs. 5 and 6 for 5 values of 0, 
16 and 80. 

Inspection of Figs. 5 and 6 also reveals that for a 
given 5, the velocity gradient at the wall decreases, 
whereas the wall temperature gradient increases, as 
the value of n increases. This fact can help explain the 
reason why for a given 5 the local wall shear stress 
decreases as n increases, Fig. 1. A similar behavior 

FIG. 3. Local Nusselt number versus local Grashof number for various angles of inclination; 
T,(x)- T, = ax”, Pr = 0.7. 
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FIG. 4. L ,ocal Nusselt number versus local Grashof number for various angles of 
T,(x) - T, = ax”, Pr = 7. 

has been observed by Sparrow and Gregg [ 151 in free 
convection along a nonisothe~a1 vertical plate. 

The average Nusselt number results, as calculated 
from equations (4.5) and (47), are illustrated in Fig. 7 
in terms of [(n + 3)/5]G(Gr, cos y/5)) “’ vs 5,. As can 
be seen from the figure, the behavior of the curves is 
similar to that of the local Nusselt number curves, 
Fig. 2. 

FOG. 5(a). Representative dimensionless velocity dis- FIG. S(b). Representative dimensionless velocity dis- 
t~butions at r = 0, 16, and 80; T,(x)- T, = ax”, Pr = 0.7. tribut~ons at r = 0,16, and 80; TW(x) - T, = ax”, Pr = 7. 

inclination : 

dower-maw ~ar~at~o~ of surface ~eat~~~, q&.x) = bx” 
For this case, the local wall shear stress z, in terms 

of z,(x2/6~v)(Gr,*cosy/6)~ Ii2 and the local Nusseit 
number Nu, in terms of Nu,(Gr_$cosy/6)-“” as a 
function of [ = (Gr:cosy/6)‘/6 tany are illustrated, 
respectively, in Figs. 8 and 9 for exponent values of 
m of -0.4,O and 1 and Pr of 0.7 and 7. The variation 
of Nu, with Cr.: at various angles of inclination y for 
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FIG. 6(a). Representative dimensionless temperature dis- 
tributions at C$ = 0, 16, and 80 ; T,(x) - T, = ax”, Pr = 0.7. 

1.0 

0. 2 

-C 0. 5 1. c I. 5 2. 0 2. 5 3. 0 
‘I 

FIG. 6(b). Representative dimensionless temperature dis- 
tributions at l= 0, 16, and 80; T,(X)- T, = ax”, Pr = 7. 

the three M values is illustrated in Fig. 10 for Pr = 0.7. 
To conserve space, the corresponding figure for 
Pr = 7 is omitted. The trends and behaviors of these 
curves are similar to those described for the case of 
wall temperature variations because the effects 
between the two are similar. Representative velocity 

FIG. 7. Average Nusselt number results for the case with FIG. 9. Local Nusselt number results for the case with 
T,(x)- T, = ax”, Pr = 0.7 and 7. q.,,(x) = bx”‘, Pr = 0.7 and 7. 

0 10 20 30 40 50 60 70 80 

c 

FIG. 8. Local wall shear stress results for the case with 
q,(x) = bx”‘, Pr = 0.7 and 7. 

and temperature profiles are shown in Figs. 11 and 
12, again for Pr = 0.7 only, for 5 values of 0, 16 and 
80, with M values of - 0.4, 0 and 1. It is noted 
here that the dimensionless temperature is given by 

L%,Y)- ~mM~w(x)- Tml = WL V@(L 0). 
Finally, the average Nusselt numbers evaluated 

from equations (49) and (51) are shown in Fig. 13. In 
the figure, the quantity [(m +4)/6]%(GrZ cos y/6)- ‘I6 
is plotted against IL. Again, the trend of the curves is 
similar to that of the local Nusselt number curves, 
Fig. 9. 

Comparisons with available experimental results 
A thorough comparison of the present numerical 

results cannot be made with existing work, because no 
numerical solutions or experimental data for natural 
convection on inclined plates are available, except for 
the limiting cases of uniform wall temperature (UWT, 
n = 0) and uniform surface heat flux (UHF, m = 0). 
The local Nusselt number results for the UHF case 
from the present analysis are compared with the cor- 
responding experimental results of Vliet [lo], and 
Shaukatullah and Gebhart [8] for water in Table 1 

_ -0.7 

--7 

_- --- 
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MUX 

FIG. 10. Local Nusseh number versus modified local Grashof number for various angles of inclination ; 
q,(x) = bx”, Pr = 0.7. 

and with those of Vliet and Ross [ 121 for air in Table katullah and Gebhart in water (Pr = 6) yield the fol- 
2, for two inclination angles of y = 30” and 75”. Vliet’s lowing correlation equation [8] 
results in water [lo] give rise to the following cor- 
relation equation for the range of inclination angles Nu, = 0.864(Gr,*siny)0,2. (62) 

30” < y < 85” The results for air obtained by Vliet and Ross have 

Nu = 0 6(PrGr*siny)‘,*. X . x (6 1) been correlated as [ 121 

On the other hand, the experimental results of Shau- 

1 IA 'Pr = 0. 7: 
1. 6 1 

Nu, = 0.55(PrGr,*siny)“.2. (63) 

FIG. 11. Representative dimensionless velocity distributions FIG. 12. Representative dimensionless temperature dis- 
at [ = 0, 16, and 80 ; q,(x) = bx”, Pr = 0.7. tributions at [ = 0, 16, and 80; q,(x) = bx’“, Pr = 0.7. 
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Table 1. A comparison between the present results and the experimental results of Vliet [lo] and Shaukatullah and Gebhart 
[8] for free convection to water from inclined plates under a uniform surface heat flux 

Grf 

y = 30 

Nu, 
Present 
results Ref. [IO] 

(Pr = 7) (Pr = 7) 
Ref. [8] 
(Pr = 6) Gr: 

y = 75” 

NUX 
Present 
results Ref. [lo] 

(Pr = 7) (Pr = 7) 
Ref. [8] 
(Pr = 6) 

1.1972 x lo4 5.09 5.04 
1.3675 x 10’ 8.20 8.20 
2.9228 x IO6 15.02 15.14 
2.2008 x 10’ 22.42 22.67 
9.9412 x 10’ 30.27 30.65 
5.5856 x lo* 42.68 43.29 
3.1384 x IO9 60.22 61.14 

4.92 2.5619 x lo4 6.61 6.70 6.53 
8.00 6.4600 x lo4 7.94 8.06 7.86 

14.77 5.4910 x lo5 12.17 12.36 12.06 
22.12 4.1345 x lo6 18.21 18.51 18.06 
29.91 3.5142 x lo7 27.93 28.40 27.71 
42.24 2.3749 x lo* 40.93 41.62 40.61 
59.66 3.2358 x lo9 69.00 70.17 68.47 

I I I I I / I results presented, correlation equations for the local 
Pr m Nusselt numbers, Nu,, as a function of Pr, Gr, or 

__ 0. 7 Gr:, and y can be obtained. The correlation equations 
for the cases of UWT and UHF are listed in the 
following : 

For the UWT case : 

15”<y<90” 

Nu, = K,(Pr)(PrGr,siny)“‘, 

5x103<PrGr,siny<5x109 (64) 

FIG. 13. Average Nusselt number results for the case with 
q,(x) = bx”, Pr = 0.7 and 7. 

As can be seen from Tables 1 and 2, the agreement 
between the present numerical predictions and the 
experimental results [8, 10, 121 is very good. 

Correlation equations for local and average Nusselt 
numbers 

A. Local Nusselt numbers. From the numerical 

K,(Pr) 2 

2Pr 

= 4 5(1 +2Pr1’*+2Pr) 1 
114 

(65) 

0” < y < 15” 

Nu, = K,(Pr)(Pr Gr,/5)“S+C(Y), 

lo3 < Pr Gr, < 109, (66) 
where 

K,(Pr) = 
Pr”’ 

0.25+1.6Pr”2’ 
C(y) = 0.070(siny)“2. 

(67) 

Table 2. A comparison between the present results and the experimental results of Vliet and 
Ross [12] for free convection to air from inclined plates under a uniform surface heat flux 

y = 30” y = 75” 

NUX NU, 
Present Present 
results Ref. [12] results Ref. [12] 

Gr: (Pr = 0.7) (Pr = 0.7) Gr: (Pr = 0.7) (Pr = 0.7) 

1.1972 x IO4 2.94 2.92 2.5619 x lo4 3.69 3.87 
1.3637 x 10’ 4.67 4.74 6.4600 x 10s 4.43 4.66 
7.6620 x 10’ 6.51 6.70 5.4910 x 10s 6.78 7.15 
2.9228 x lo6 8.46 8.76 4.1345 x 106 10.14 10.71 
2.2008 x IO7 12.57 13.11 3.5142 x 10’ 15.54 16.43 
9.9412 x 10’ 16.93 17.73 2.3749 x IO8 22.75 24.07 
5.5856 x 10’ 23.82 25.04 1.0094 x 109 30.38 32.15 
3.1384 x lo9 33.57 35.36 3.2358 x lo9 38.34 40.59 
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For the UHF case : 

15” < y ,< 90” 

NM, = K3(Pr)(PrGr,*siny)“‘, 

5x104<PrGr~siny~.5x10’0, (68) 

where 

K,(Pr) = [Pr/(4+9Pr”*+ IOPr)]“5 (69) 

O”&y< 15” 

Nu, = K,(Pr)(Pr Gr,*6)‘16fD(Y), 

lo4 6 PrGr: < lOLo, (70) 

where 

K,(Pr) = 
Pr’12 

0.12+ 1.2Pr1’2’ 
D(y) = 0.038(siny)“2. 

(71) 

It is noted here that equations (64) and (68) are 
modified forms of those given, respectively, in Refs. 
[22, 231 for the vertical plates in which Gr, is 
replaced with Gr,sin y and Gr: with Gr:siny. It has 
been found that the present numerical results correlate 
well with equations (64), (66), (68) and (70) within a 
maximum error of, respectively, 7%, 8%, 7% and 8% 
for Prandtl numbers of 0.7 and 7. The maximum 
errors occur at y near 15” for all correlation equations, 
as is to be expected. 

B. Average Nusselt numbers. Next, the correlation 
equations for the average Nusselt numbers, G, can 
be derived from the numerical results of equations 
(45)-(48) and (49)-(52) or by a direct integration of 
h from equations (64), (66), (68) and (70) to determine 
/i and then Nu in accordance with equation (44). This 

latter approach gives rise to the following correlation 
equations : 

For the UWT case : 

15” < y < 90” 

Nu = (4/3)K, (Pr)(Pr Gr, sin y) ‘/4, 

5x103< PrGr,siny<5x109 (72) 

O”,<y,< 15” 

For the UHF case : 

15” < y < 90” 

10’ < Pr Gr, < 10’. (73) 

K = (5/4)K,(Pr)(Pr Grr sin y) ‘I’, 

5x104<PrGr~siny<5x10’0 (74) 

0” < y < 15” 

Nu= 4il~~~ty)I (Pr Grz/6) 1/6 +D(y), 

lo4 ,< PrGrr < 10”. (75) 

In equations (72)-(75), the Prandtl number dependent 
coefficients K,(Pr), K,(Pr), K,(Pr) and K,(Pr) and 
the angle dependent coefficients C(y) and D(y) are as 
defined by equations (65), (67), (69) and (71). The 
numerically calculated results from equations (45)- 
(48) and (49~(52) correlate well with equations (72), 
(73), (74) and (75) within a maximum error of, respect- 
ively, lo%, 8%, 9% and 5 %. Again the maximum 
errors occur at y near 15”. 

Table 3. Nusselt number ratio (Nu,),,,/(Nu,),,, for inclined plates, 
Pr = 0.7 and Pr = I 

i 

Pr = 0.7 

r - (N&w 

(NGJWT 

Pr = 7 

5 ~ (N&m 

(N~JuwT 

0 0 1.292 0 1.260 
1 1.089 1.226 0.980 1.178 
2 2.144 1.197 1.920 1.155 
4 4.200 1.172 3.741 1.141 
6 6.213 1.162 5.535 1.137 
8 8.197 1.156 7.299 1.134 

10 10.162 1.153 9.045 1.132 
20 19.791 1.147 17.604 1.129 
30 29.218 1.145 25.985 1.128 
40 38.517 1.144 34.251 1.128 
50 47.722 1.143 42.435 1.128 
60 56.854 1.143 50.555 1.127 
70 65.924 1.143 58.617 1.127 

80 14.943 1.142 66.635 1.127 

w(i, = 0) a(<, = 0) 1.141 a(<, = 0) 1.127 

Note : horizontal plates (i = 5 = 0) ; vertical plates (i, = r I = 0). 
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Comparisons of results between UWT and UHF cases 
The Nusselt number ratios (Nu&.,~/(Nu~)~~~ as a 

function of c or 5 between the UHF and the UWT 
cases are tabulated in Table 3 for both Pr = 0.7 and 
7. It is observed from the table that the Nusselt num- 
ber ratio is always larger than unity, that it decreases 
with increasing values of [ (i.e. increasing Gr: for a 
given y or increasing y for a given Gr3, and that 
the ratio is larger for Pr = 0.7 than for Pr = 7. In 
addition, as the plate is tilted from a horizontal to a 
vertical orientation, the Nusselt number ratio 

(Ak)“HFI(Ak)UWT decreases from 1.292 to 1.141 for 
Pr = 0.7 and from 1.260 to 1.127 for Pr = 7. A similar 
comparison of the Nusselt number ratios was per- 
formed by Sparrow and Gregg [ 151 for a vertical plate. 

CONCLUSIONS 

In this paper, natural convection in laminar bound- 
ary layer flows over horizontal, inclined and vertical 
flat plates has been studied analytically for two surface 
heating conditions, the power-law variation of the 
wall temperature and the power-law variation of the 
surface heat flux. The major findings of the study can 
be summarized as follows : 

(1) Both the local wall shear stress and the local sur- 
face heat transfer rate increase with increasing 5 
or [ (i.e. increasing Gr, or Grr for a given y or 
increasing y for a given Gr, or Grg for a given 
value of the exponent n or m and a given Prandtl 
number Pr. 

(2) The local surface heat transfer rate increases with 
increasing value of the exponent n or m for a given 
5 or [, but this trend is reversed for the local wall 
shear stress in terms off “(5, 0) or F”(l, 0). 

(3) For a given 5 or [ and a given exponent n or m, 
the local surface heat flux increases whereas the 
local wall shear stress decreases with increasing 
Prandtl number. 

(4) The behavior of the average Nusselt numbers is 
similar to that of the local Nusselt numbers for all 
the cases that were investigated. 

In addition to the above findings, general cor- 
relation equations for the local and average Nusselt 
numbers that cover various angles of inclination y and 
Prandtl numbers (in particular for Pr of 0.7 and 7) 
are obtained for the special cases of uniform wall 
temperature (UWT) and uniform surface heat flux 
(UHF). The correlation equations agree well with cal- 
culated numerical results within a maximum error of 
less than 10%. A comparison between the UHF and 
UWT cases reveals that the local Nusselt number for 
the UHF case, (NuJUHF, is greater than that for the 
UWT case, (&),,r, by some 29 to 14% for a Prandtl 
number of 0.7 and some 26 to 13% for a Prandtl 
number of 7. A comparison between the present 
numerical results and available experimental data for 

the case of uniform surface heat flux is also made. The 
agreement between the two is found to be very good. 
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CONVECTION NATURELLE SUR DES PLAQUES HORIZONTALES, 
INCLINEES OU VERTICALES AVEC DES FLUX DE CHALEUR OU DES 

TEMPERATURES PARIETAUX VARIABLES 

Rkun&On conduit une analyse pour etudier les caracteristiques dynamiques et thermiques des ecou- 
lements laminaires de convection naturelle avec couche limite sur des plans horizontaux, inclines ou 
verticaux avec une temperature parietale T,(x) ou le flux thermique par&al q,,,(x) varie comme une 
puissance de l’ordonnee axiale selon T,(x) = T, + ax” ou qw = bx”‘. Les equations de base sont d’abord 
mises sous forme adimensionnelle par une transformation de non similitude et les equations rtsultantes 
sont ensuite rtsolues par une methode de differences finies. Des rtsultats numeriques pour des fluides a 
nombre de Prandtl entre 0,7 et 7 sont present& pour trois valeurs d’exposant dans chacune des conditions 
de surface. On trouve que la tension a la paroi et le taux de transfert thermique augmentent tous les deux 
quand Tangle d’inclinaison y a partir de l’horizontale augmente ou quand le nombre de Grashof local 
croit. L’augmentation de la valeur de l’exposant n ou m favorise le transfert, mais elle cause une diminution 
de la contrainte par&ale. Des equations sont obtenues pour les nombres de Nusselt locaux et globaux 
dans les cas speciaux de temperature uniforme (UWT) a la paroi et de flux de chaleur uniforme (UHF). 
Des comparaisons de nombre de Nusselt sont faites pour les cas UHF entre les presents risultats et les 

donnees experimentales et on constate un bon accord entre eux. 

NATtiRLICHE KONVEKTION AN HORIZONTALEN, GENEIGTEN UND VERTIKALEN 
PLATTEN MIT VARIABLER OBERFLACHENTEMPERATUR ODER VARIABLER 

WiiRMESTROMDICHTE 

Zusammenfaasung-Es wird eine Untersuchung der Striimungs- und Warmeiibergangscharakteristiken bei 
nattirlicher laminarer Konvektion in Grenzschichtstromungen an horizontalen, geneigten und vertikalen 
ebenen Platten durchgefiihrt, wobei die Wandtemperatur T,(x) oder die Oberfllchenwarmestromdichte 
q,(x) mit der Potenz der axialen Koordinate x in der Form T,(x) = T, + ax” oder qw = bx” anwachst. 
Die Erhaltungssltze werden zuerst durch eine nichtkonforme Transformation in dimensionslose Form 
gebracht, und die so erhaltenen Gleichungen werden mit einem Differenzenverfahren gel&t. Numerische 
Ergebnisse fiir Fluide mit Prandtl-Zahlen von 0.7 und 7 werden fur drei reprlsentative Werte der Expo- 
nenten fur beide genannten Oberflichenbedingungen vorgelegt. Es zeigte sich, dal3 sowohl die Grtliche 
Wandschubspannung als such der ortliche Wlrmeiibergang mit ansteigendem Neigungswinkel y von der 
Horizontalen und mit ansteigender ortlicher Grashofzahl zunehmen. Ein Anstieg in den Werten der 
Exponenten n oder m erhiiht den Wlrmeiibergang, aber reduziert die Wandschubspannung. Kor- 
relationsgleichungen fur die iirtlichen und mittleren Nusselt-Zahlen werden fur die Spezialfalle der ein- 
heitlichen Wandtemperatur (UWT) und der einheitlichen Warmestromdichte (UHF) ermittelt. Die 
vorliegenden Ergebnisse fur die Grtlichen Nusselt-Zahlen werden mit verfiigbaren experimentellen Daten 

fur den UHF-Fall verglichen, wobei gute tibereinstimmung festgestellt wird. 

ECTECTBEHHAR KOHBEKHMR HA IOPH30HTAJlbHbIX, HAKJIOHHblX M 
BEPTWKAflbHbIX IInACTMHAX C M3MEH5IIOlIIMMMCII TEMTIEPATYPOH 

IIOBEPXHOCTM MJIM TEIUIOBbIM IIOTOKOM 

AHHoTauHa-AHanA3Mpy~oTCIl XapaKTepWZT‘TKH naMHHapHOr0 CB060AHOKOHBeKTMBHOr0 Te'TeHMR M Ten- 

noO6MeHa a peW,Me nOrpaHMWOr0 CnOa OT rOpA30HTanbHblX,HaKnOHHblX II aepTTIKanbHbtx IUKKTMH, 

TWd”epaTypa CYeHKU KOTO,,blX T,(X) ll”M TeunOaOii "OTOK q,(X) UJMeHRmTca "o cTe"eHHoMy 3aKoHy 

T,(X)= T, +0X" AJIll 4, = km. OupeAen5IloWTe ypaBHeHAa C TIOMOmbm HeaBTOMOAenbHOrO npeo6pa- 
30BaHMII "PMBOnRTCn CHaraJIa K 6e3pa3MepHOMy BALlY, a 3aTeM peWalOTC!d KOHWHOpa3HOCTHbIM 

MeTOL,OM. ~HCJeHHblC pC3yJ,bTaTbl LUIR XW,ZKOCTCk C ',HCJlaMH npaHL,T."S 0,7 H 7 TTpeACTaaneHbl Ann 
TpeX 3HaqeHAii noKa3aTenri CTeneHA npu KaxAoh4 u3 ycnosuA HeOAHOpOAHOrO uarpesa uOBepXHOCTM. 

HaBAeHo, qT0 nOKanbHOe KaCaTenbHOe Hanp%WHHe Ha CTeHKe H JlOKaJlbHblfi K03$,+AUHeHT Tennoo6- 

MeHa Ha nosepxHocTki yaenwuieamrcn c ~~CTOM yrna oTKnoHeHm4 0~ ropa3oHTanu ;‘wm noKanbHor0 

wcna rpacro+a. YBenrweHTie n mm m ycanlraaeT K03#@uuieHT TennooGMeHa Ha cTeHKe, Ho yMeHb- 

maeT KacaTenbHoe HanpameHHe Ha cTeHKe.Koppennukm Ann noKanbHoro u OcpeAHeHHoro wcen Hycce- 
nbTa nony=teHbT Ann cny9aeB OAHO~OAHOR TekmepaTypbr CTeHKIi M onHoponHor0 Tennoaoro noToKa Ha 

"OBepXHOCTH. nOny',eHHble 3Ha'IeHllR nOKanbHb,x 'IAcen HyCCeJIbTa CpaBHHBaIOTCR C MMCEOUIHMACII 

3KC"CPBMeHTaJbHblMW naHHblMAL,nH sTOpOrOCnyran,Ha~AeHO MX XOPOUlCeCOOTBCTCTBMC. 


